KQL Query Optimization | CONFIDENTIAL

KQL QUERY
OPTIMIZATION GUIDE

Query Patterns • Performance • Time Series • Best Practices

Version 1.0 | January 2026

Table of Contents

1. KQL Fundamentals
Kusto Query Language (KQL) is optimized for real-time analytics on large datasets. Understanding KQL patterns and best practices enables efficient querying of KQL databases in Fabric.
1.1 Query Structure
TableName
| where TimeGenerated > ago(1h) // Filter rows
| where Status == 'Error' // Additional filter
| project Device, Message, Time // Select columns
| summarize Count=count() by Device // Aggregate
| order by Count desc // Sort
1.2 Key Operators
	Operator
	Purpose
	SQL Equivalent

	where
	Filter rows
	WHERE

	project
	Select/rename columns
	SELECT

	summarize
	Aggregate data
	GROUP BY

	extend
	Add calculated columns
	SELECT with expression

	join
	Combine tables
	JOIN

	order by
	Sort results
	ORDER BY

	take
	Limit rows
	TOP/LIMIT

2. Filtering Optimization
Efficient filtering is critical for KQL performance. Filter early and filter specifically.
2.1 Time Filtering
// Good: Use time filter first
SensorData
| where TimeGenerated > ago(1h)
| where DeviceId == 'device-001'

// Bad: Time filter after other filters
SensorData
| where DeviceId == 'device-001'
| where TimeGenerated > ago(1h)
Tip: Always put time filter first - KQL optimizes for time-partitioned data.
2.2 Equality vs Contains
// Fast: Equality comparison
| where Status == 'Error'

// Slower: Contains search
| where Message contains 'error'

// Faster alternative: has
| where Message has 'error'
2.3 Multiple Values
// Good: Use 'in' for multiple values
| where Status in ('Error', 'Warning', 'Critical')

// Bad: Multiple OR conditions
| where Status == 'Error' or Status == 'Warning' or Status == 'Critical'
2.4 String Operations
	Operation
	Usage
	Performance

	==
	Exact match
	Fastest

	has
	Word/token search
	Fast

	contains
	Substring search
	Moderate

	startswith
	Prefix match
	Fast

	matches regex
	Regular expression
	Slowest

3. Aggregation Patterns
3.1 Basic Aggregation
// Count by category
Events
| where TimeGenerated > ago(1d)
| summarize Count=count() by Category

// Multiple aggregations
SensorData
| where TimeGenerated > ago(1h)
| summarize
 AvgTemp = avg(Temperature),
 MaxTemp = max(Temperature),
 MinTemp = min(Temperature),
 EventCount = count()
 by DeviceId
3.2 Time-Based Aggregation
// Aggregate by time bucket
SensorData
| where TimeGenerated > ago(24h)
| summarize AvgTemp = avg(Temperature)
 by bin(TimeGenerated, 1h)

// Multiple dimensions
SensorData
| summarize AvgTemp = avg(Temperature)
 by bin(TimeGenerated, 1h), DeviceId
3.3 Bin Sizes
	Time Range
	Recommended Bin
	Result Points

	Last hour
	1m or 5m
	60 or 12

	Last day
	15m or 1h
	96 or 24

	Last week
	1h or 6h
	168 or 28

	Last month
	1d
	30

3.4 Distinct Values
// Count distinct values
| summarize UniqueDevices = dcount(DeviceId)

// Approximate distinct (faster for large datasets)
| summarize UniqueDevices = dcount(DeviceId, 1)

4. Joins
4.1 Join Types
	Join Kind
	Description

	inner
	Only matching rows from both tables

	leftouter
	All from left, matching from right

	rightouter
	All from right, matching from left

	fullouter
	All rows from both tables

	leftanti
	Left rows without match in right

	leftsemi
	Left rows with match in right (no right columns)

4.2 Join Syntax
// Basic join
SensorData
| where TimeGenerated > ago(1h)
| join kind=inner (
 DeviceInfo
 | project DeviceId, Location, Owner
) on DeviceId

// Join with different column names
Table1
| join kind=leftouter Table2 on $left.Id == $right.DeviceId
4.3 Join Best Practices
1. Filter both sides before joining
1. Place smaller table on the right
1. Use explicit join kind
1. Project only needed columns before join
1. Avoid joining on high-cardinality string columns

5. Time Series Analysis
5.1 Make-Series
Create time series for analysis and visualization.
SensorData
| where TimeGenerated > ago(24h)
| make-series AvgTemp = avg(Temperature)
 on TimeGenerated
 from ago(24h) to now() step 1h
 by DeviceId
5.2 Gap Filling
// Fill gaps with previous value
| make-series AvgTemp = avg(Temperature) default=real(null)
 on TimeGenerated step 1h
| extend AvgTemp = series_fill_forward(AvgTemp)
5.3 Anomaly Detection
// Detect anomalies in time series
SensorData
| make-series Value = avg(Temperature)
 on TimeGenerated step 1h
| extend anomalies = series_decompose_anomalies(Value)
| mv-expand TimeGenerated, Value, anomalies
5.4 Forecasting
// Forecast future values
| make-series Value = avg(Temperature)
 on TimeGenerated from ago(7d) to now()+1d step 1h
| extend forecast = series_decompose_forecast(Value, 24)

6. Best Practices
6.1 Query Optimization
1. Filter by time first (always)
1. Use specific equality over contains/regex
1. Project columns early to reduce data
1. Use 'has' instead of 'contains' for words
1. Limit results with take for exploration
1. Avoid regex when alternatives exist
6.2 Performance Tips
1. Keep queries under 64KB
1. Limit join results with filters
1. Use approximate aggregations for large data
1. Avoid materialize() unless needed
1. Use summarize instead of distinct
6.3 Query Patterns
// Template: Dashboard query
TableName
| where TimeGenerated > ago(timeRange)
| where Filter1 == value1
| summarize Metrics by Dimensions
| order by SortColumn
| take MaxRows
6.4 Anti-Patterns to Avoid
1. Querying without time filter
1. Using regex for simple string matching
1. Joining large tables without filtering
1. Selecting all columns (use project)
1. Complex nested queries (use let statements)

Appendix: Document Information
	Document Title
	KQL Query Optimization Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
